Electrochemistry Notes

Vocabulary

- Electrochemistry: the study of the interchange of chemical and electrical energy
- Redox reaction: a transfer of electrons from the reducing agent to the oxidizing agent
- Oxidation: a loss of electrons (an increase in the oxidation number)
- Reduction: a gain of electrons (a decrease in the oxidation number)
- Half-reactions: a redox reaction broken in to two parts, one half with the oxidation and the other half with the reduction
- Salt bridge: the connection between the two solutions
- Galvanic cell: device in which chemical energy is changed to electrical energy
- Anode: the electrode at which oxidation occurs (an-ox)
- Cathode: the electrode at which reduction occurs (red-cat)
- Cell potential, \(E_{\text{cell}} \): potential difference between the oxidation and reduction
- Volt: the unit of electrical potential (J/C)
- Standard hydrogen electrode: a platinum electrodes in contact with 1M H\(^+\) ions bathed by H\(_2\) gas at 1 atm
- Standard reduction potentials, \(E^0 \): likelihood for the reduction to occur with all solutes at 1M or 1 atm
- Concentration cell: cell with both electrodes having identical components but at different concentrations
- Nernst equation: converts cells that are at nonstandard conditions to standard conditions
 \[E = E^0 - \frac{RT}{nF} \ln(Q) \]
- Glass electrode: contains a reference solution of dilute hydrochloric acid in contact with a thin glass membrane
- Lead storage battery: lead serves as the anode and lead coated with lead dioxide serves as the cathode
- Electrolytic cell: an apparatus that uses electrical energy to produce chemical change for nonspontaneous cells
- Electrolysis: forcing a current through a cell to produce a chemical change; used for nonpontaneous cells
- Ampere: measure of current in coulombs per second (C/s). Often used to help convert the number of electrons flowing (current) to the rate of reaction in time
Description of Cells

Galvanic Cells:

An electrochemical cell of the reaction:
\[\text{Zn(s)} + \text{Cu}^{2+}(aq) \rightarrow \text{Zn}^{2+}(aq) + \text{Cu(s)} \]

anode (+) \hspace{1cm} cathode (-) \hspace{1cm} Anode (+) is always written first.

Oxidation at the anode \hspace{1cm} Reduction at the cathode \hspace{1cm} So oxidation is always written first.

Electrons flow from where they are lost (anode) to where they are gained (cathode).

Note that a porous frit or disc may substitute for the salt bridge.

Electron Flow, Spontaneity and Electrolysis

1st Electrons flow in the spontaneous direction.

2nd For a spontaneous cell, electrons will flow from the anode to the cathode as illustrated.

3rd For a nonspontaneous cell, a power source [with a voltage greater than the electrochemical potential, E_{cell}]

4th Nonspontaneous cells are electrolytic cells, electrolysis reactions.

The calculations typically involve reducing/oxidizing a mass, g, in a time, s or with a current, Amp (C/s). To do the calculations set up a series of conversions between the given and wanted using the three conversion factors:

\[\frac{e^-}{\text{mol}} \quad \frac{96485 \text{C}}{\text{mol-e}^-} \quad \frac{F}{s} \]

See p 868 example problem 17.9.
Electrochemistry Notes

Calculating Electrochemical Potential of a Cell

1) Write two \(\frac{1}{2} \) reactions written as reductions

2) Compare E’s—the reaction with the highest E is reduced, the other is oxidized

3) Flip the oxidized reaction, or change the sign of E

4) Balance/add the reaction

5) \(E_{\text{rxn}} = E_{\text{reduced}} + E_{\text{oxidized}} \)
 * If E > 0, the reaction is spontaneous
 * If E < 0, the reaction is nonspontaneous

This is because \(\Delta G = -nFE_{\text{rxn}} \) where \(n \) is the number of moles of electrons,

\(F = \) Faraday’s constant, 96485 C/mol,

\(E_{\text{rxn}} = \) electrochemical potential

and for a reaction to be ... spontaneous:

- \(\Delta G = < 0, \ so \ E > 0 \)
- \(\Delta G = > 0, \ so \ E < 0 \)

Note: The preceding notes are for nonstandard conditions (E and \(\Delta G \)).
For standard conditions (\(E^\circ \) and \(\Delta G^\circ \)) the same concepts apply.

The Nernst Equation:
The Nernst equation is used to relate a cell’s electrochemical potential, \(E \), that is not at standard conditions (1 atm. 25 °C, 1 M solutions) with an electrochemical potential that is at standard conditions, \(E^\circ \).

\[
E = E^\circ - \frac{nF}{n} \ln(Q)
\]

where
- \(E \) = cell potential under nonstandard conditions
- \(E^\circ \) = cell potential under standard conditions
- \(n \) = number of moles of electrons
- \(R = 8.314 \) VC/mol K
- \(F = 96485 \) C/mol
- \(T = \) temperature
- \(K \) = number of moles of electrons
- \(Q \) = the reaction quotient (use initial concentrations and is \(Q = \) [prod] / [react])

*As the concentration of the products of a redox reaction increases, the potential voltage decreases; and as the concentration of the reactants in a redox reaction increases, the potential voltage increases.

\[
E^\circ = \frac{RT}{nF} \ln K , \ K \text{ is the equilibrium constant}
\]

*If \(E^\circ \) is positive, then K is greater than 1 and the forward reaction is favored. If \(E^\circ \) is negative, then K is less than 1 and the reverse reaction is favored.
Electrochemistry Notes

Example Problems

1. Consider the galvanic cell based on the reaction
 \[\text{Al}^{3+} + \text{Mg} \rightarrow \text{Al} + \text{Mg}^{2+} \]

 The half reactions are
 \[\text{Al}^{3+} + 3e^- \rightarrow \text{Al} \quad E^0 = -1.66 \text{V} \]
 \[\text{Mg}^{2+} + 2e^- \rightarrow \text{Mg} \quad E^0 = -2.37 \text{V} \]

 Give the balanced cell reaction and calculate \(E^0 \) for the cell.

 (See work on page 845)

 Solution: \(0.71 \text{V} \)

2. Using the data in Table 17.1, calculate the \(\Delta G \) for the reaction
 \[\text{Cu}^{2+} + \text{Fe} \rightarrow \text{Cu} + \text{Fe}^{2+} \]

 Is this reaction spontaneous?

 (See work on page 850)

 Solution: \(\Delta G = -1.5 \times 10^3 \text{J}, \) spontaneous

3. Describe the cell based on the following half reactions
 \[\text{VO}_2^+ + 2H^+ + e^- \rightarrow \text{VO}^{2+} + H_2O \quad E^0 = 1.00 \text{V} \]
 \[\text{Zn}^{2+} + 2e^- \rightarrow \text{Zn} \quad E^0 = -0.76 \text{V} \]

 where \(T = 25^\circ \text{C} \)
 \[[\text{VO}_2^+] = 2.0M \]
 \[[H^+] = 0.50M \]
 \[[\text{VO}^{2+}] = 1.0 \times 10^{-2}M \]
 \[[\text{Zn}^{2+}] = 1.0 \times 10^{-1}M \]

 (See work on page 855)

 Solution: \(1.89 \text{V} \)

3. Determine the cell potential for the rxn \(\text{Al}^{3+} (aq) + \text{Mg} (s) \rightarrow \text{Al} (s) + \text{Mg}^{2+} (aq) \)

 Half-Reactions:
 \[\text{Al}^{3+} + 3e^- \rightarrow \text{Al} \quad E^0 = -1.66 \text{V} \]
 \[\text{Mg}^{2+} + 2e^- \rightarrow \text{Mg} \quad E^0 = -2.37 \text{V} \]

 work
 \[2 (\text{Al}^{3+} + 3e^- \rightarrow \text{Al}) \]
 \[3 (\text{Mg} \rightarrow \text{Mg}^{2+} + 2e^-) \]

 \[2\text{Al}^{3+} (aq) + 3\text{Mg} (s) \rightarrow 2\text{Al} (s) + 3\text{Mg}^{2+} (aq) \quad E^0 = 0.71 \text{V} \]
Electrochemistry Notes

4. Write the line notation for the cell, given:

\[\text{Ag}^+ + e^- \rightarrow \text{Ag} \]
\[\text{Fe}^{3+} + e^- \rightarrow \text{Fe}^{2+} \]

work Line Notation:

\[\text{Pt(s)} \parallel \text{Fe}^{2+} (aq), \text{Fe}^{3+} (aq) \parallel \text{Ag}^+ (aq) \parallel \text{Ag} (s) \]

5. Determine the free energy of the cell that has the rxn:

\[\text{Cu}^{2+} (aq) + \text{Fe(s)} \rightarrow \text{Cu(s)} + \text{Fe}^{2+} (aq) \]

\[\begin{align*}
\text{Cu}^{2+} + 2e^- &\rightarrow \text{Cu} & \varepsilon^0 = 0.34 \text{ V} \\
\text{Fe} &\rightarrow \text{Fe}^{2+} + 2e^- & -\varepsilon^0 = 0.44 \text{ V}
\end{align*} \]

\[\begin{align*}
\text{Cu}^{2+} + \text{Fe} &\rightarrow \text{Fe}^{2+} + \text{Cu} & \varepsilon^0 = 0.78 \text{ V}
\end{align*} \]

\[\Delta G^0 = -nF \varepsilon^0 \]
\[\Delta G^0 = -(2 \text{ mol})(96,485 \frac{C}{\text{mol}})(0.78 \frac{J}{C}) \]
\[\Delta G^0 = -1.5 \times 10^5 \text{ J} \]

6. Determine the cell potential for the galvanic cell with the following half-reactions at 25 °C with the given concentrations: [Ag⁺] = 1.0 M, [H₂O₂] = 2.0 M, [H⁺] = 2.0 M.

\[\text{Ag}^+ + e^- \rightarrow \text{Ag} \]
\[\text{H}_2\text{O}_2 + 2\text{H}^+ + 2e^- \rightarrow 2\text{H}_2\text{O} \]

work

\[-2 (\text{Ag}^+ + e^- \rightarrow \text{Ag}) \]
\[\varepsilon^0 = 0.80 \text{ V} \]
\[\text{H}_2\text{O}_2 + 2\text{H}^+ + 2e^- \rightarrow 2\text{H}_2\text{O} \]
\[\varepsilon^0 = 1.78 \text{ V} \]

\[\begin{align*}
2\text{Ag} + \text{H}_2\text{O}_2 + 2\text{H}^+ &\rightarrow 2\text{Ag}^+ + 2\text{H}_2\text{O} & \varepsilon^0 = 0.98 \text{ V}
\end{align*} \]

\[\varepsilon_{cell} = \varepsilon^0_{cell} = \frac{RT}{nF} \ln \left(\frac{[\text{Ag}^+]^2}{[\text{H}^+]^2[\text{H}_2\text{O}_2]} \right) \]

\[\varepsilon_{cell} = 0.98V - \frac{(8.314 \frac{J}{K \cdot \text{mol}})(298K)}{(2 \text{ mol})(96485 \frac{C}{\text{mol}})} \ln \left(\frac{(1.0M)^2}{(2.0M)^2(2.0M)^2} \right) \]
\[\varepsilon_{cell} = 1.01 \text{ V} \]