Ecological Significance
Some protists are autotrophic, they are usually the base of marine food chains.
Protists also help provide us with oxygen.
Some protists are symbiotic, they are symbiotic with other organisms.

What makes them different
Protists resemble similarities to fungi, plants, and animals.
They are not plants and animals.

Saprolegnia
Water molds that feed on dead or decaying organisms like fish
Can live anywhere between 3 and 50 degrees Celsius
Goes through asexual and sexual reproduction
Like many protists, it is a pathogen and infects other organisms

Examples
Protozoa
Protozoa are both heterotrophs and autotrophs.
They live in salt and fresh water.
They are from the protozoa classification.

Works Cited

Protists
By Robert, Nancy and Rob
Structure
Protists are among the most elaborate and diverse organisms.

They can be both Unicellular or Multicellular but all eukaryotic.

Protists can either have animal-like membrane cells or plant cells with cell walls.
Diversity

Protists are classified into 3 groups: Protozoa, Algae, and slime molds and water molds.

Protozoa: Heterotrophs
Algae: Autotrophs
Water and slime molds: fungus like and heterotrophs
Protozoans

Protozoans are split into 3 phyla based on movement

Ciliophora—have cilia which are short hair-like structures on cell membrane

Sporozoa—Parasitic cells

Sarcodina—false feet protists
Algae

Algae protists are split into 6 different Phyla:
- Chlorophytes: unicellular or multicellular resemble plants the most
- Phaeophytes: Multicellular marine organisms like seaweed
- Rhodophytes: algae found in deep depths of seawater
- Chrysophytes: unicellular algae in oceans
- Pyrrophytes: algae containing 2 flagellae
- Euglenophytes: unicellular found in freshwater
Slime Molds and water Molds

Split into 3 phyla
Oomycotes - resemble fungi and have spores
Myxomycotes - visible to the naked eye and resemble fungi
Acrasiomycotes - one nucleiod cells
Mode of Nutrition

Protists have 1 of 3 different modes of nutrition

Heterotrophs—Feed off of other organisms
Autotrophs—Self feed through photosynthesis
Saprotrophs—Feed on decomposing or decaying matter
Reproduction

Protists either go through sexual reproduction or asexual reproduction which is binary fission.
Ecological Significance

Since most protists are autotrophic they are usually the base of marine food chains. Protists also help by providing us with Algin, Agar, and antiseptics.

Protists especially protozoans often are parasites to humans and cause many diseases like Malaria and Giardiasis.

Protists have a mutualistic relationship with coral reefs because they allow for a food source while coral reefs provide for support and shelter.
What makes them different

Protists resemble similarities to fungi, plants and animals.
The protista kingdom is for organisms that don't belong anywhere else.
Found in every moist spot on earth.
Heterotroph by absorption – discrete digestive enzymes and then absorb the nutrients.
Euglena are both heterotrophs and autotrophs. They live in salt and fresh water. They are from the protozoa classification.
Dinoflagellate

Most are marine plankton
Play a vital role in food source for marine life
Phototrophs
Help create coral reefs
Paramecium

Heterotrophic feeding on other bacteria
Have cilia to move around
Found in freshwater and ponds and marshes
Saprologenia

Water molds have feed on dead organic decayiong organisms like fungi
Can live anywhere between 3 and 33 degrees celcius
Goes thorough asexual and sexual reproduction
Like many protists it is a pathogen and infects other organisms

