Geometry Midterm Review

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Which statement(s) may be true about the two lines shown in the diagram?
 I. The lines are coplanar.
 II. The lines are parallel.
 III. The lines intersect in one point.
 a. I only
 b. I and II only
 c. II and III only
 d. I and III only
 e. I, II, and III

2. What is the distance between point \(A(–3, 2) \) and point \(B(5, –1) \)?
 a. 2.2
 b. 73
 c. 8.5
 d. 11
 e. 5

3. In the diagram, what are the values of \(x \) and \(y \)?
 a. \(x = 47 \), \(y = 75 \)
 b. \(x = 47 \), \(y = 74 \)
 c. \(x = 75 \), \(y = 47 \)
 d. \(x = 71 \), \(y = 51 \)
 e. \(x = 45 \), \(y = 77 \)

4. \(\angle A \) and \(\angle T \) are complementary. The measure of \(\angle T \) is three times the measure of \(\angle A \). What is \(m\angle A \)?
 a. \(22^\circ \)
 b. \(22.5^\circ \)
 c. \(23^\circ \)
 d. \(24^\circ \)

5. \(\angle 1 \) and \(\angle 2 \) in the diagram are ____?

 a. vertical angles
 b. complementary
 c. a linear pair
 d. supplementary

6. Given points \(G(2, 10) \) and \(H(–6, –10) \), find the coordinates of the midpoint of \(GH \).
 a. \((–2, 10) \)
 b. \((–4, 0) \)
 c. \((–2, 0) \)
 d. \((8, 20) \)
 e. \((–4, –10) \)

7. Which of the following statements is false?

 a. \(A, B, C, \) and \(D \) are coplanar.
 b. \(A, B, \) and \(D \) are collinear.
 c. \(\overrightarrow{BE} \) and \(\overrightarrow{BA} \) are opposite rays.
 d. Answers B and C only
 e. Answers A, B, and C

8. Given \(\angle BAD \), and a third ray \(AC \) in the interior of \(\angle BAD \), if \(m\angle BAC = 129^\circ \) and \(m\angle CAD = 51^\circ \), then the two angles are ____?

 a. supplementary
 b. complementary
 c. a linear pair
d. supplementary and a linear pair
e. complementary and a linear pair

9. \(T\) is the midpoint of \(\overline{PQ}\). Which one of the following is not an appropriate statement?
 a. \(PT = TQ\)
 b. \(PT = TQ\)
 c. \(PT \equiv TQ\)
 d. \(PT + TQ = PQ\)

10. Name three points that are collinear.

11. \(\overrightarrow{PR}\) is represented by which sketch?
 a.
 b.
 c.
 d.

12. Draw a labeled diagram for a line.

13. Which is not a possible value for \(y\) in the figure below?
 a. 70
 b. 115
 c. 55
 d. 160

14. In the figure, \(l \parallel n\) and \(r\) is a transversal. Which of the following is not necessarily true?
 a. \(\angle 8 \cong \angle 2\)
 b. \(\angle 2 \cong \angle 6\)
15. In the figure shown, $HC \parallel GD$ and $m\angle ABC = 100^\circ$. Which of the following statements is false?

- c. $\angle 5 \equiv \angle 3$
- d. $\angle 7 \equiv \angle 4$

16. Line m is parallel to line n and they are each intersected by the same two transversals. Which angle is NOT necessarily congruent to $\angle 4$?

- a. $m\angle CBE = 80^\circ$
- b. $m\angle DEF = 80^\circ$
- c. $\angle DEB$ and $\angle CBE$ are corresponding angles.
- d. $\angle CBE$ and $\angle GBE$ are alternate interior angles.

18. Which pair of lengths can be two of the sides of an isosceles triangle which has a perimeter of 52 inches?

- a. 15 inches, 25 inches
- b. 15 inches, 22 inches
- c. 12 inches, 22 inches
- d. 16 inches, 21 inches

19. If $\triangle ABC \equiv \triangle DEF$, $AB = 10$ feet, $m\angle B = 27^\circ$, and $m\angle F = 14^\circ$, which of the following statements is false?

- a. $\overline{AC} \equiv \overline{DF}$
- b. $\angle C \equiv \angle F$
- c. $m\angle E = 139^\circ$
- d. $AB = DE$

20. If $\triangle MNO \equiv \triangle VWX$, which statement is NOT true?

- a. $\overline{NO} \equiv \overline{VW}$
- b. $\angle O \equiv \angle X$
- c. $\overline{MO} \equiv \overline{VX}$
- d. $\angle N \equiv \angle W$

21. Determine which triangle is congruent to the given triangle.

- a. none of these
- b. $\triangle ABC$
- c. $\triangle DEF$
- d. $\triangle GHI$
22. Refer to the figure below. Which of the following statements is true?

\[\triangle HLK \text{ is isosceles with base } \overline{HK}, \quad \angle IHL \text{ and } \angle JKL \text{ are right angles, } \overline{IK} \cong \overline{JH} \]

a. \(\triangle HIL \cong \triangle KIL \) by HL
 b. \(\triangle HLK \cong \triangle JLK \) by SSS
 c. \(\triangle HKI \cong \triangle HJK \) by SAS
 d. There are no congruent triangles.

23. Refer to the figure shown. Which of the following statements is true?

\[\overline{TV} \cong \overline{WW} \quad \overline{UV} \cong \overline{XV} \]

a. \(\triangle TUV \cong \triangle XWV \) by ASA
 b. \(\triangle TUV \cong \triangle VXW \) by SAS
 c. \(\triangle TUV \cong \triangle WXV \) by SAS
 d. \(\triangle TUV \cong \triangle WXV \) by SSS

24. In \(\triangle ABC \), \(AB = 3x - 2 \), \(BC = x + 4 \), and \(AC = 7 \). Also \(\overline{AB} \parallel \overline{BC} \). Which term does NOT describe \(\triangle ABC \)?

 a. Equilateral
 b. Acute
 c. Isosceles
 d. Obtuse
25. Given: \(\triangle ABC \cong \triangle DEF \) with \(AB \cong BC \). Which statement of congruence is not provable?
 a. \(\triangle ABC \cong \triangle CBA \)
 b. \(\triangle DEF \cong \triangle CBA \)
 c. \(\triangle ABC \cong \triangle FDE \)
 d. \(\triangle ABC \cong \triangle FEB \)

26. Given: \(BC \) is the perpendicular bisector of \(\overline{KM} \). Which statement is true?

![Diagram of perpendicular bisector](image)

a. \(\angle BLK, \angle LCM, \angle CLK, \angle KLB \) are all right angles.
 b. \(CM = BM \)
 c. \(\angle KLM \) is a right angle.
 d. \(C \) is the midpoint of \(\overline{KM} \)

27. \(\overrightarrow{OE} \) bisects \(\angle BOA \), \(\overrightarrow{EA} \perp \overrightarrow{OA} \), and \(\overrightarrow{EB} \perp \overrightarrow{OB} \). Which statement is NOT true?

![Diagram of bisectors](image)

a. \(\overline{AE} \cong \overline{BE} \)
 b. \(\angle AOE \cong \angle EAO \)
 c. \(OA \cong OB \)
 d. \(\angle AEO \cong \angle BEO \)

28. Which side lengths allow you to construct a triangle?
 a. 2, 3, and 8
 b. 4, 1, and 9
 c. 7, 2, and 2
 d. 6, 8, and 10

29. Two sides of a triangle have lengths 7 and 13. The third side has a length that is ________.
 a. greater than 6 and less than 13
 b. less than 20 and greater than 6
 c. greater than 20
 d. less than 6

30. Which of these lengths could be the sides of a triangle?
 a. 15 cm, 4 cm, 20 cm
 b. 3 cm, 15 cm, 20 cm
 c. 11 cm, 5 cm, 16 cm
 d. 5 cm, 12 cm, 16 cm

31. Given the triangles below, if \(\overline{ZY} \cong \overline{CB} \), \(\overline{XY} \cong \overline{AB} \), and \(m \angle B > m \angle Y \), decide which statement is true.

![Diagram of triangles](image)

a. \(\overline{ZX} > \overline{BC} \)
 b. \(\overline{XZ} < \overline{AC} \)
 c. \(\overline{XY} < \overline{AE} \)
 d. \(\overline{AC} < \overline{XZ} \)
32. In \(\triangle PQR \) and \(\triangle BEF \), \(PR \equiv EF \), \(QR \equiv GF \),
\[PQ = 18 \text{ cm}, \quad EG = 24 \text{ cm}, \quad \text{and} \quad m \angle R = 65^\circ \]
Which angle measure is reasonable for \(\angle F \)?
a. 55°
b. 65°
c. 70°
d. 60°
33. Which statement is false for the diagram?

\[\begin{align*}
M & = NR \\
LM & = PR \\
LN & < NP \\
LN & > NP
\end{align*} \]
34. Refer to the figure. Choose the correct statement.

\[\begin{align*}
\text{a. } & x < 10 \\
\text{b. } & 10 < x < 13 \\
\text{c. } & x > 13 \\
\text{d. } & x = 13
\end{align*} \]
35. Refer to the figure below.

\[\begin{align*}
\text{a. } & BE > ED \\
\text{b. } & BE < ED \\
\text{c. } & AE = EC \\
\text{d. } & BE = ED
\end{align*} \]
36. If \(\frac{P}{Q} = \frac{R}{S} \), which of the following is NOT true?

\[\begin{align*}
\text{a. } & \frac{R}{S} = \frac{P}{Q} \\
\text{b. } & PS = RQ \\
\text{c. } & \frac{Q}{P} = \frac{S}{R} \\
\text{d. } & PR = SQ
\end{align*} \]
37. If \(\frac{a}{b} = \frac{c}{d} \), then ______.

\[\begin{align*}
\text{a. } & \frac{a + b}{b} = \frac{c + b}{d} \\
\text{b. } & ac = bd \\
\text{c. } & \frac{a + b}{b} = \frac{c + d}{d} \\
\text{d. } & \frac{a}{b} = \frac{a + c}{b + d}
\end{align*} \]
38. The Community Recreation Center is developing plans for a new sports facility. Community members can submit suggestions for the new facility, along with basic scale drawings of their ideas. Rachel wants to include a new 11- by 24-meter tennis court in the athletic center. She is submitting a scale drawing on an 8.5- by 11-inch sheet of paper. Which scale should Rachel use to create as large a drawing as possible on the paper?

\[\frac{3}{8} \text{ in.} = 1 \text{ m} \]
b. $\frac{3}{4}$ in. = 1 m
c. $\frac{1}{8}$ in. = 1 m
d. $\frac{7}{16}$ in. = 1 m

39. Which triangle is NOT similar to any of the others?
 a. [Image of triangle with angles 60° and 30°]
 b. [Image of triangle with angles 60° and 30°]
 c. [Image of triangle with angles 60° and 30°]
 d. [Image of triangle with angles 50° and 80°]

40. One way to show that two triangles are similar is to show that ______
 a. two angles of one are congruent to two angles of the other
 b. two sides of one are proportional to two sides of the other
 c. a side of one is congruent to a side of the other
 d. an angle of one is congruent to an angle of the other

41. If the corresponding sides of two triangles are proportional, then _____.
 a. the triangles are right triangles
 b. the triangles are similar
 c. corresponding side lengths are equal
 d. the triangles are congruent

42. If $\triangle ABC \sim \triangle PBQ$, then which of the following proportions is NOT true?
 a. $\frac{AC}{CB} = \frac{PQ}{QB}$
 b. $\frac{AP}{PB} = \frac{AC}{PQ}$
 c. $\frac{AP}{PB} = \frac{CQ}{QB}$
 d. $\frac{PB}{QB} = \frac{PQ}{AC}$

43. For the figure shown, which statement is not true?
 a. $\frac{w}{x} = \frac{x}{z}$
 b. $w = x = yz$
 c. $wz = xy$
 d. $w = \frac{y}{z}$

In the figure below, $\triangle ABC \sim \triangle A'B'C'$.

44. If $\triangle ABC \sim \triangle PBQ$, then which of the following proportions is NOT true?
44. Which statement is true of the transformation from \(\triangle ABC\) to \(\triangle A'B'C'\)?
 a. The measures of all corresponding angles change by a scale factor of 2.
 b. The measures of all corresponding angles change by a scale factor of \(\frac{1}{2}\).

Completion

Complete each statement.

Use the diagram to solve for the missing angle measure.

1. If \(m\angle 3 = 25^\circ\), then \(m\angle 4 = \) _______.

2. If \(m\angle 2 = 78^\circ\), then \(m\angle 1 = \) _______.

Short Answer

Use the diagram.

1. Name three noncollinear points

2. Name four noncoplanar points

3. Name two intersecting lines

4. Name three collinear points

Solve for the variable using the given information.

5. Given: \(GM = 28\)

\[4x + 9 \quad 3x - 2 \]

\[G \quad E \quad M \]

6. Given: \(\overline{AB} \cong \overline{CD}\)

Find the length of the segment. Round decimals to the nearest tenth.

7. \(\overline{CD}\)

8. \(\overline{AB}\)

Use the diagram to find the measure of the angle. State what type of angle is formed.
9. \(\angle CAF \)

10. \(\angle BAD \)

11. \(\angle EAD \)

12. \(\angle EAE \)

Find the coordinates of the midpoint of a segment with the given endpoints.

13. \(A(0, 0), B(0, -12) \)

14. \(C(2, 9), D(-2, -1) \)

15. \(E(-3, -3), F(9, -15) \)

Use the diagram where \(\overrightarrow{EF} \) is the angle bisector of \(\angle TEA \).

16. Given \(m\angle TEA = 74^\circ \), find \(m\angle TEF \) and \(m\angle FEA \).

17. Given \(m\angle FEA = 29^\circ \), find \(m\angle TEF \) and \(m\angle TEA \).

18. \(\overrightarrow{BD} \) bisects \(\angle ABC \).

19. \(\overrightarrow{BD} \) bisects \(\angle ABC \).

20. \(\angle A \) and \(\angle B \) are supplementary. The measure of \(\angle B \) is five times the measure of \(\angle A \). Find \(m\angle A \) and \(m\angle B \).

Find the values of the variables.

21.

22.
<table>
<thead>
<tr>
<th>NUMBER</th>
<th>ANSWER</th>
<th>POINTS</th>
<th>DIFFICULTY</th>
<th>REFERENCE</th>
<th>TOPIC</th>
<th>KEY POINTS</th>
<th>BLM TYPE</th>
<th>NOTE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>D</td>
<td>1</td>
<td>Level B</td>
<td>G1.01.EN.ST.01</td>
<td>SAT/ACT Chapter Test</td>
<td>SAT/ACT</td>
<td>Analysis</td>
<td>978-0-618-65613-4</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>C</td>
<td>1</td>
<td>Level B</td>
<td>G1.01.EN.ST.02</td>
<td>VA.VASOL.MTH.01.GEO.G.2.a</td>
<td>SAT/ACT</td>
<td>Geometry</td>
<td>978-0-618-65613-4</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>A</td>
<td>1</td>
<td>Level B</td>
<td>G1.01.EN.ST.03</td>
<td>VA.VASOL.MTH.01.GEO.G.2.a</td>
<td>SAT/ACT</td>
<td>Application</td>
<td>978-0-618-65613-4</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>B</td>
<td>1</td>
<td>Level B</td>
<td>G1.01.EN.ST.04</td>
<td>VA.VASOL.MTH.01.GEO.G.3</td>
<td>SAT/ACT</td>
<td>Application</td>
<td>978-0-618-65613-4</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>A</td>
<td>1</td>
<td>Level A</td>
<td>G1.01.EN.ST.05</td>
<td>VA.VASOL.MTH.01.GEO.G.2.a</td>
<td>SAT/ACT</td>
<td>Knowledge</td>
<td>978-0-618-65613-4</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>C</td>
<td>1</td>
<td>Level A</td>
<td>G1.01.EN.ST.06</td>
<td>VA.VASOL.MTH.01.GEO.G.2.a</td>
<td>SAT/ACT</td>
<td>Knowledge</td>
<td>978-0-618-65613-4</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>C</td>
<td>1</td>
<td>Level B</td>
<td>G1.01.EN.ST.07</td>
<td>SAT/ACT Chapter Test</td>
<td>SAT/ACT</td>
<td>Analysis</td>
<td>978-0-618-65613-4</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>D</td>
<td>1</td>
<td>Level B</td>
<td>G1.01.EN.ST.08</td>
<td>SAT/ACT Chapter Test</td>
<td>SAT/ACT</td>
<td>Application</td>
<td>978-0-618-65613-4</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>B</td>
<td>1</td>
<td>Level B</td>
<td>MGEH0006</td>
<td>VA.VASOL.MTH.01.GEO.G.11</td>
<td>Lesson 1.3 Use Midpoint and Distance Formulas</td>
<td>Comprehension</td>
<td>978-0-618-65613-4</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>A</td>
<td>1</td>
<td>Level A</td>
<td>MLGE0084</td>
<td>Lesson 1.1 Identify Points, Lines, and Planes</td>
<td>points</td>
<td>Comprehension</td>
<td>978-0-618-65613-4</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>C</td>
<td>1</td>
<td>Level A</td>
<td>MHGT0077</td>
<td>Lesson 1.1 Identify Points, Lines, and Planes</td>
<td>identify</td>
<td>Knowledge</td>
<td>978-0-618-65613-4</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>C</td>
<td>1</td>
<td>Level B</td>
<td>MIM20664</td>
<td>VA.VASOL.MTH.01.GEO.G.3</td>
<td>Lesson 1.5 Describe Angle Pair Relationships</td>
<td>Synthesis</td>
<td>978-0-618-65613-4</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>D</td>
<td>1</td>
<td>Level B</td>
<td>MGEH0026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lesson 3.2 Use Parallel Lines and Transversals

KEY: parallel | transversal

Lesson 3.2 Use Parallel Lines and Transversals

KEY: angles | parallel lines | transversal

Lesson 3.2 Use Parallel Lines and Transversals

KEY: vertical | angle | parallel | transversal | congruent | corresponding

Lesson 4.1 Apply Triangle Sum Properties

KEY: angle | acute | triangle | measure

Lesson 4.1 Apply Triangle Sum Properties

KEY: triangle | perimeter | side | isosceles

Lesson 4.3 Prove Triangles Congruent by SSS

KEY: triangle | parallel lines | congruence | ASA | SAS

Lesson 4.4 Prove Triangles Congruent by SAS and HL

KEY: triangle | parallel lines | congruence | ASA | SAS

Lesson 4.4 Prove Triangles Congruent by SAS and HL

KEY: triangle | parallel lines | congruence | ASA | SAS

Lesson 4.7 Use Isosceles and Equilateral Triangles

KEY: triangle | segment | congruent

Lesson 4.7 Use Isosceles and Equilateral Triangles

KEY: triangle | segment | congruent

Lesson 5.2 Use Perpendicular Bisectors

KEY: perpendicular bisector

Lesson 5.2 Use Perpendicular Bisectors

KEY: perpendicular bisector
TOP: Lesson 6.5 Prove Triangles Similar by SSS and SAS
KEY: similar | triangle | rule
BLM: Knowledge NOT: 978-0-618-65613-4

41. ANS: B PTS: 1 DIF: Level A REF: HLGM0644
 TOP: Lesson 6.5 Prove Triangles Similar by SSS and SAS
 KEY: side | corresponding | proportional
 BLM: Knowledge NOT: 978-0-618-65613-4

42. ANS: B PTS: 1 DIF: Level B REF: HLGM0665
 TOP: Lesson 6.6 Use Proportionality Theorems
 KEY: proportion | similar | triangle
 BLM: Comprehension NOT: 978-0-618-65613-4

43. ANS: B PTS: 1 DIF: Level B
 REF: 7f5e9dd2-cdbb-11db-b502-0011258082f7
 TOP: Lesson 6.6 Use Proportionality Theorems
 KEY: Parallel lines | transversal | proportion
 BLM: Comprehension NOT: 978-0-618-65613-4

44. ANS: D PTS: 1 DIF: Level B
 REF: 62ac7800-4f27-11db-b4d8-0011258082f7
 TOP: Lesson 6.7 Perform Similarity Transformations
 KEY: dilation | similar figures
 BLM: Comprehension NOT: 978-0-618-65613-4

COMPLETION

1. ANS: 155°
 PTS: 1 DIF: Level B REF: Geo.01.TestB.Eng.21
 STA: VA.VASOL.MTH.01.GEO.G.3 TOP: Ch. 1 Test, Level B
 KEY: Pre-made Test BLM: Comprehension
 NOT: 978-0-618-65613-4

2. ANS: 102°
 PTS: 1 DIF: Level B REF: Geo.01.TestB.Eng.20
 STA: VA.VASOL.MTH.01.GEO.G.3 TOP: Ch. 1 Test, Level B
 KEY: Pre-made Test BLM: Comprehension
 NOT: 978-0-618-65613-4

SHORT ANSWER

1. ANS:
 Answers may vary. Sample answer: H, A, D
 PTS: 1 DIF: Level A REF: Geo.01.TestB.Eng.02
 TOP: Ch. 1 Test, Level B KEY: Pre-made Test
 BLM: Knowledge NOT: 978-0-618-65613-4

2. ANS:
 Answers may vary. Sample answer: H, A, D, C
 PTS: 1 DIF: Level A REF: Geo.01.TestB.Eng.03
 TOP: Ch. 1 Test, Level B KEY: Pre-made Test
 BLM: Knowledge NOT: 978-0-618-65613-4

3. ANS:
 Answers may vary: Sample answer: CE and AB
4. ANS:
A, D, B; C, D, E

5. ANS:
\[\chi = 3 \]

6. ANS:
\[\chi = 14 \]

7. ANS:
9.9 units

8. ANS:
3.6 units

9. ANS:
75°; acute

10. ANS:
60°; acute

11. ANS:
180°; straight
12. **ANS:**
\[120^\circ; \text{ obtuse}\]

PTS: 1
DIF: Level B
REF: Geo.01.TestB.Eng.09

13. **ANS:**
\[\left(0, -6\right)\]

PTS: 1
DIF: Level B
REF: Geo.01.TestB.Eng.13

14. **ANS:**
\[\left(0, 4\right)\]

PTS: 1
DIF: Level B
REF: Geo.01.TestB.Eng.14

15. **ANS:**
\[\left(3, -9\right)\]

PTS: 1
DIF: Level B
REF: Geo.01.TestB.Eng.15

16. **ANS:**
\[m\angle TEF = 37^\circ; m\angle AEF = 37^\circ\]

PTS: 1
DIF: Level B
REF: Geo.01.TestB.Eng.16

17. **ANS:**
\[m\angle TEF = 29^\circ; m\angle TEA = 58^\circ\]

PTS: 1
DIF: Level A
REF: Geo.01.TestB.Eng.17

18. **ANS:**
36

PTS: 1
DIF: Level B
REF: Geo.01.TestB.Eng.18

19. **ANS:**
4

PTS: 1
DIF: Level B
REF: Geo.01.TestB.Eng.19
20. ANS:
\[m \angle A = 30^\circ; \ m \angle B = 150^\circ \]

PTS: 1 DIF: Level B REF: Geo.01.TestB.Eng.22
STA: VA.VASOL.MTH.01.GEO.G.3 TOP: Ch. 1 Test, Level B
KEY: Pre-made Test BLM: Comprehension
NOT: 978-0-618-65613-4

21. ANS:
\[x = 25; \ y = 29 \]

PTS: 1 DIF: Level B REF: Geo.01.TestB.Eng.23
STA: VA.VASOL.MTH.01.GEO.G.3 TOP: Ch. 1 Test, Level B
KEY: Pre-made Test BLM: Comprehension
NOT: 978-0-618-65613-4

22. ANS:
\[x = 23; \ y = 60 \]

PTS: 1 DIF: Level B REF: Geo.01.TestB.Eng.24
STA: VA.VASOL.MTH.01.GEO.G.3 TOP: Ch. 1 Test, Level B
KEY: Pre-made Test BLM: Comprehension
NOT: 978-0-618-65613-4