Radical Review

- A perfect square is _________________________________.
- The first 12 perfect squares are: _________________________________.
- A square root of a number is _________________________________.
- Find: \(\sqrt{36} \) \(\sqrt{49} \) \(\sqrt{144} \) \(\sqrt{x^2} \) \(\sqrt{4x^4} \)
- Estimating square roots: find the closest perfect square
 o Estimate to the nearest whole number: \(\sqrt{35} \) \(\sqrt{55} \) \(\sqrt{99} \)
- Other roots:
 o A perfect cube is _________________________________.
 o The first 10 perfect cubes are: _________________________________.
 o A cube root of a number is _________________________________.
- Find: \(\sqrt[3]{8} \) \(\sqrt[3]{27} \) \(\sqrt[3]{125} \) \(\sqrt[3]{x^5} \) \(\sqrt[3]{8x^6} \)
- \(\sqrt[3]{y} \) means the \(x \)th root of \(y \). The \(\sqrt{ } \) symbol is called a **radical**. The number inside is the **radicand**.
- By default, take the square root. Example: \(\sqrt{4} = 2 \)

Simplifying Radicals

A radical expression is in simplest form if:

- No perfect squares other than 1 are in the radicand
- No fractions are in the radicand
- No radicals appear in the denominator of a fraction

We use the Product Property of Radicals and Quotient Property of Radicals to simplify:

Product Property of Radicals
The square root of a product equals the product of the square roots of the factors:
\(\sqrt{ab} = \sqrt{a} \cdot \sqrt{b} \)

Quotient Property of Radicals
The square root of a quotient equals the quotient of the square roots of the numerator and denominator:
\(\frac{\sqrt{a}}{\sqrt{b}} = \frac{\sqrt{a}}{\sqrt{b}} \)

- Write the radicand as the **product of perfect squares**, and then take the roots of those perfect squares.
 a) Simplify \(\sqrt{32} \)
 \(\sqrt{32} = \sqrt{16 \cdot 2} = \sqrt{16} \cdot \sqrt{2} = 4 \sqrt{2} \)
 b) Simplify \(\sqrt{9x^3} \)
 \(\sqrt{9x^3} = \sqrt{9} \cdot x \cdot x = \sqrt{9} \cdot \sqrt{x^2} \cdot \sqrt{x} = 3x \sqrt{x} \)

You try: Simplify the radical expressions...

a) Simplify \(\sqrt{24} \)

b) Simplify \(\sqrt{25x^2} \)
Examples for Quotient Property of Radicals:

a) Simplify \(\frac{\sqrt{13}}{\sqrt{100}} = \frac{\sqrt{13}}{10} \)

b) Simplify \(\frac{1}{\sqrt{y^2}} = \frac{1}{y} \)

Multiplying Radicals

We can use the product property of radicals to multiply radicals.

Examples:

a) \(\sqrt{6} \cdot \sqrt{6} = \sqrt{36} = 6 \) (makes sense!)

b) \(\sqrt{3x} \cdot 4\sqrt{x} = 4 \sqrt{3x^2} = 4x\sqrt{3} \)

c) \(\sqrt{7x^2} \cdot 3\sqrt{x} = 3\sqrt{7x^2}y = 3xy\sqrt{7} \)

Note: When we solve \(\sqrt{x^2} \), we always take the positive value of \(x \).

Rationalizing Denominators

The process of eliminating a radical in a denominator is called rationalizing the denominator.

Examples: Rationalize the denominator...

a) \(\frac{5}{\sqrt{7}} = \frac{5\sqrt{7}}{7} \)

b) \(\frac{4}{\sqrt{2x}} = \frac{4\sqrt{2x}}{2x} = \frac{2\sqrt{2x}}{x} \)

You try: Simplify the radical expressions...

a) \(\sqrt{20} \)

b) \(\sqrt{72} \)

c) \(\sqrt{32x^5} \)

d) \(\sqrt{96x^2} \)

e) \(\frac{9x}{\sqrt{16}} \)

f) \(\frac{4}{\sqrt{3}} \)

g) \(\frac{1}{\sqrt{x}} \)

h) \(\sqrt{\frac{2x^2}{5}} \)

i) \(\sqrt{\frac{8}{3n^2}} \)

j) \(\sqrt[3]{27x^3} \)

k) \(\sqrt[3]{16x^4} \)

l) \(\sqrt[3]{\frac{64x^6y^9}{8}} \)