Name: 
 

RC3:  Algebra 2 SOL Simulation



(Questions courtesy of Chesterfield County Public Schools)

Multiple Choice

Identify the choice that best completes the statement or answers the question.
 

 1. 

The population of a state is counted every ten years.  In the table,       populations are given for every twenty years.  At the rate the state is growing, what would be the best estimate for the population in the year 2020?
Yearpopulation (to nearest 1000)
1800478,000
1820639,000
1840753,000
1860993,000
18801,400,000
19001,894,000
19202,559,000
19403,572,000
19604,556,000
19805,880,000
20008,049,000
a.
6, 970, 000
b.
10, 600, 000
c.
16, 000, 000
d.
100, 600, 000
 

 2. 

Evaluate       mc002-1.jpg.
a.
mc002-2.jpg
b.
mc002-3.jpg
c.
mc002-4.jpg
d.
mc002-5.jpg
 

 3. 

Which of the following best describes the parent function of
            mc003-1.jpg?
a.
mc003-2.jpg
b.
mc003-3.jpg
c.
mc003-4.jpg
d.
mc003-5.jpg
 

 4. 

Determine the intervals on which the function is decreasing.
mc004-1.jpg
a.
mc004-2.jpg
b.
mc004-3.jpg
c.
mc004-4.jpg
d.
mc004-5.jpg
 

 5. 

Simplify mc005-1.jpgin terms of x if mc005-2.jpgand mc005-3.jpg.
a.
mc005-4.jpg
b.
mc005-5.jpg
c.
mc005-6.jpg
d.
mc005-7.jpg
 

 6. 

Determine which function has a range mc006-1.jpg.
a.
mc006-2.jpg
b.
mc006-3.jpg
c.
mc006-4.jpg
d.
mc006-5.jpg
 

 7. 

If you drop a ball and let it bounce repeatedly, the rebound height becomes smaller with each bounce.  Using an initial height of 300 inches, the formula for finding the rebound heights can be modeled by mc007-1.jpgfor mc007-2.jpg.  
What is the approximate rebound height for mc007-3.jpg , the 4th bounce?
a.
2 inches
b.
13 inches
c.
50 inches
d.
75 inches
 

 8. 

Determine all possible functions with an asymptote mc008-1.jpg.
I   mc008-2.jpg
II  mc008-3.jpg

III  mc008-4.jpg

IV  mc008-5.jpg

mc008-6.jpg

VI  mc008-7.jpg
a.
I and III
b.
II and V
c.
III and IV
d.
IV and VI
 

 9. 

Describe the end behavior of mc009-1.jpg.
a.
As x approaches infinity, f(x) approaches negative infinity.
As x approaches negative infinity, f(x) approaches infinity.
b.
As x approaches infinity, f(x) approaches infinity.
As x approaches negative infinity, f(x) approaches negative infinity.
c.
As x approaches infinity, f(x) approaches negative infinity.
As
x approaches negative infinity, f(x) approaches negative infinity.
d.
As x approaches infinity, f(x) approaches infinity.
As
x approaches negative infinity, f(x) approaches infinity.
 

 10. 

Which of the following scenarios represents a combination?
a.
The arrangement of 8 books on a shelf.
b.
The number of ways 6 people can be seated at a round table if 2 people must       be seated next to each other.
c.
The letters r,s,t,v,w are used to form 5-letter passwords for a security system.
d.
A seven person committee selected from the junior class.
 

 11. 

The electrical resistance of a wire varies directly as its length and       inversely as the square of its diameter. A wire with a length of 200 inches and a diameter of one-quarter of an inch has a resistance of 20 ohms.  Find the electrical resistance in a 500 inch wire with the same diameter.
a.
50 ohms
b.
200 ohms
c.
1250 ohms
d.
5000 ohms
 

 12. 

A race car driver increases her speed at a constant rate.  What will be her speed after 20 seconds if her initial speed is 17 meters per second and her rate of acceleration is mc012-1.jpg meters per second? 
a.
37.0 meters per second
b.
57.0 meters per second
c.
59.2 meters per second
d.
61.4 meters per second
 

 13. 

The useful life of a radial tire is normally distributed with a mean of 30,000 miles and a standard deviation of 5000 miles.  The company makes       10,000 tires a month.  What is the probability that if a radial tire is purchased at random, it will last between 20,000 and 35,000 miles?
a.
94%
b.
81%
c.
68%
d.
47%
 

 14. 

Identify all x- and y- intercepts of mc014-1.jpg.
a.
mc014-2.jpg
b.
mc014-3.jpg
c.
mc014-4.jpg
d.
mc014-5.jpg
 

 15. 

A polynomial function P(x) has zeros mc015-1.jpg.  Which of the following represents the factors of P(x)?
a.
mc015-2.jpg
b.
mc015-3.jpg
c.
mc015-4.jpg
d.
mc015-5.jpg
 

 16. 

The weights of eggs produced on a farm are normally distributed with a mean of 1.4 ounces and a standard deviation of 0.4 ounces.  To be graded extra large, an egg must weigh at least 2 ounces.  What is the probability that an egg from this farm will be graded extra large?
a.
0.934
b.
0.157
c.
0.066
d.
0.025
 

 17. 

Determine the zeros of mc017-1.jpg.
a.
mc017-2.jpg
b.
mc017-3.jpg
c.
mc017-4.jpg
d.
mc017-5.jpg
 

 18. 

Identify the domain of mc018-1.jpg.
a.
mc018-2.jpg
b.
mc018-3.jpg
c.
mc018-4.jpg
d.
mc018-5.jpg
 

 19. 

Determine the inverse of
mc019-1.jpg
a.
mc019-2.jpg
b.
mc019-3.jpg
c.
mc019-4.jpg
d.
mc019-5.jpg
 

 20. 

Identify the equation that best represents the graph p(x).
mc020-1.jpg
a.
mc020-2.jpg
b.
mc020-3.jpg
c.
mc020-4.jpg
d.
mc020-5.jpg
 

 21. 

Twelve runners are in a cross country race.  How many different ways can they finish first, second, and third?
a.
2200
b.
1320
c.
220
d.
132
 

 22. 

If a temperature is constant, the volume of a gas varies inversely as its pressure.  A gas with a pressure of 150 pounds per square inch occupies a volume of 25 cubic feet.  What is the constant of proportionality for this       variation?
a.
3750
b.
673
c.
6
d.
mc022-1.jpg
 

 23. 

Determine the number of horizontal and vertical asymptotes for mc023-1.jpg
a.
0
b.
1
c.
2
d.
3
 

 24. 

At 1,821 feet tall, the CN Tower in Toronto, Ontario, is the world’s tallest self-supporting structure.  A penny is dropped from the observation deck on top of the tower and falls to the ground.  The table shows the penny’s distance from the ground after various periods of       time (in seconds) have passed.  Where is the penny located after falling for a total of 10.5 seconds?
Time (seconds)Distance
(feet)
01821
21757
41565
61245
8797
10221
a.
57 feet
b.
140 feet
c.
221 feet
d.
300 feet
 



 
Check Your Work     Start Over