Fractions Unit 4.2

A fraction is a way of representing part of a whole or part of a group.

A fraction is used to name a part of one thing or a part of a collection of things.

Fraction-Vocabulary

Numerator-the top number in a fraction. The numerator tells how many equal parts are described.

Denominator- the bottom number in a fraction. The denominator tells how many equal parts in all.

Parts of a Region- shade to show 3/4

Mixed Numbers \& Improper Fractions

Mixed Numbers- are a number that has a mixed number and a fraction.
example: $3 \frac{2}{4}$

Improper Fractions- are fractions in which the numerator is larger than the denominator.
example: $\frac{9}{4}$
You can easily go from a mixed number to an improper fraction.....or an improper fraction to a mixed number.

Let's start by going from a mixed number to an improper fraction. To do this you need to use multiplication.

$$
2 \frac{1}{4}=\frac{9}{4}
$$

First multiply the denominator 4 and the whole number $24 \times 2=8$ then add the denominator 1 to total. This will give you the numerator. The denominator is the same as the original denominator..

(Mixed Number ξ Improper Fractions continued)

Directions: Turn these mixed numbers into improper fractions.
$3 \frac{1}{3}$
$5 \frac{1}{2}$
$4 \frac{2}{3}$
$1 \frac{3}{6}$
$6 \frac{1}{3}$
$2 \frac{3}{5}$

Now we are going to make improper fractions into mixed I numbers. To do this you need to use division.

$$
\frac{8}{3}=2 \frac{2}{3}
$$

I First figure out how many times the denominator goes into I the numerator without going over. This will be your whole I number. Your denominator will stay the same. To find out your numerator you need to multiply your denominator by your i whole number. Next subtract that product from the original i numerator. Sounds confusing??? Not to worry we will do lots I and lots of practicing.
Directions: Turn these improper fractions into mixed numbers.

$\underline{6}$	7	$\underline{9}$	15
4	2	6	6
11	$\underline{5}$	$\underline{14}$	
$\frac{11}{3}$	2	3	

Factors-the numbers multiplied together to find a product. You will need to figure out common factors to put fractions into simplest form.

Directions: Give all of the factors for the following numbers.

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	

Simplest Form

The first step in finding the simplest form is to find the GCF.

GCF-

So how do you find LCM? First you find the factors of both the numerator and denominator. The one that is the lowest or smallest is the LCM.
$\begin{array}{lll}4 & 1, & 2,4 \\ 2 & 1, & \\ 2, & 6\end{array}$

Let's Practice. Give the GCF for each of these fractions.

$\frac{6}{9}$

$\frac{9}{15}$

$$
\frac{8}{10}
$$

$\frac{4}{10}$

(Simplest Form continued)

Once you've figured out the GCF then you can do step w which is to divide both the numerator and denominator by the GCF.

$$
\begin{aligned}
& \left.\frac{4}{6} \begin{array}{l}
1, \\
1,
\end{array}, \begin{array}{l}
2, \\
2,
\end{array}\right) \\
& 2 \div \frac{4}{6}=\frac{2}{3}
\end{aligned}
$$

Since the GCF is 2 , then you need to divide the numerator and denominator by 2

Let's Practice. Find the GCF for each of these fractions and then divide the fraction to find the simplest form.
$\frac{3}{9} \quad \frac{9}{12}$

$\frac{5}{10}$	$\frac{6}{10}$

$\frac{6}{8}$	$\frac{4}{8}$

$$
\frac{11}{12} \quad \frac{4}{12}
$$

Directions: Add or Subtract Fractions with unlike denominators.

Before you can solve these problems, you have to do the math to make the denominators the same. This will take multiplication.

$$
\begin{array}{ll}
\frac{1}{3}+\frac{2}{6} & \frac{1}{5}+\frac{3}{6} \\
\frac{1}{3}+\frac{2}{6} & \frac{2}{8}+\frac{1}{2} \\
\frac{3}{6}+\frac{2}{3} & \frac{3}{8}-\frac{1}{4}
\end{array}
$$

$$
\frac{2}{3}-\frac{4}{9}
$$

$$
\frac{8}{10}-\frac{2}{5}
$$

$$
\frac{2}{4}-\frac{1}{3}
$$

$$
\frac{6}{8}-\frac{1}{2}
$$

Comparing Fractions
Directions: Compare Fractions using $<=>$. To do this you need to make the denominators the same. You will use multiplication for this..
$\begin{array}{llll}\frac{1}{2} & \frac{2}{6} & \frac{1}{12} & \frac{3}{4}\end{array}$
$\frac{1}{3} \quad \frac{2}{5}$

$$
\frac{2}{8} \quad \frac{1}{7}
$$

$\frac{3}{9} \quad \frac{2}{3}$
$\frac{3}{6} \quad \frac{1}{4}$
$\frac{2}{3} \quad \frac{4}{12}$

$$
\frac{4}{10} \quad \frac{2}{5}
$$

$\frac{2}{4} \quad \frac{1}{3}$

$$
\frac{6}{10} \quad \frac{1}{2}
$$

Comparing Fractions
Directions: Compare Fractions using $<=>$. To do this you need to make the denominators the same. You will use multiplication for this..
$\begin{array}{llll}\frac{1}{2} & \frac{2}{6} & \frac{1}{12} & \frac{3}{4}\end{array}$
$\frac{1}{3} \quad \frac{2}{5}$

$$
\frac{2}{8} \quad \frac{1}{7}
$$

$\frac{3}{9} \quad \frac{2}{3}$
$\frac{3}{6} \quad \frac{1}{4}$
$\frac{2}{3} \quad \frac{4}{12}$

$$
\frac{4}{10} \quad \frac{2}{5}
$$

$\frac{2}{4} \quad \frac{1}{3}$

$$
\frac{6}{10} \quad \frac{1}{2}
$$

