INTERCEPT FORM OF A QUADRATIC

Intercept form of a Quadratic \(y = a(x - p)(x - q) \)

This form helps you find the \(x \)-intercepts, also called zeros and solutions, from the equation. To do this replace the \(y \)-value with zero and then solve for the variable \(x \).

Example #1 – Find the zeros given each of the following quadratic equations.

a) \(y = (x+6)(x+2) \)
 b) \(y = 2(x+3)(x-1) \)
 c) \(y = -\frac{1}{2}(x-3)(x+1) \)
 d) \(f(x) = 5(x-3)^2 \)

Example #2 – Find the zeros for each of the following quadratic equations by writing each equation in intercept form first.

a) \(y = x^2 + 9x + 18 \)
 b) \(y = 8x^2 - 50x \)
 c) \(x^2 - 18x + 81 = 0 \)
 d) \(y = 6x^2 + 3x - 30 \)

Note: The technique of solving a quadratic only holds true if the expression is set equal to zero.
Finding the Axis of Symmetry from Standard Form

Find the x-intercepts.

Average the distance between the x-intercepts to find the x-coordinate of the vertex using $x = \frac{p+q}{2}$.

Find the y-coordinate of the vertex by substituting in the x-coordinate of the vertex.

Example #3 – Find the zero(s), axis of symmetry and vertex given each quadratic equation.

a) $2x^2 + 10x + 12 = 0$
b) $f(x) = 5x^2 + 4x - 1$
c) $x^2 - 6x - 24 = 3$

Zero(s): ________________
Zero(s): ________________
Zero(s): ________________

Axis of Symmetry: _______
Axis of Symmetry: _______
Axis of Symmetry: _______

Vertex: ___________
Vertex: ___________
Vertex: ___________

Remember: the axis of symmetry is half way between the two x-intercepts because parabolas are _________.

Example #4 – Write the equation of the parabola in intercept form whose zeros are at -2 and 5, and passes through the point (6,2).
1. Find the zeros given each of the following quadratic equations.
 a) \(49x^2 - 16 = 0\)
 b) \(y = x^2 - 9\)
 c) \(3m^2 - 3m = 0\)
 d) \(y = x^2 + 10x + 25\)
 e) \(y = x^2 - 7x + 6\)
 f) \(3t^2 - 8t + 7 = 2\)

2. Write the equation of the parabola in intercept form whose zeros are at -2 and 5, and passes through the point (3,9).

3. Find the \(x\)-intercepts, axis symmetry and vertex of each of the following.
 a) \(y = -2(x - 2)(x + 4)\)
 b) \(y = -x^2 + 6x - 8\)
 c) \(y = 2x^2 - 28x + 90\)

Zero(s): ____________
Axis of Symmetry: ______
Vertex: ____________
Zero(s): ____________
Axis of Symmetry: ______
Vertex: ____________
Zero(s): ____________
Axis of Symmetry: ______
Vertex: ____________