Variation

Variation (A1.8)

	Direct	Indirect (Inverse)
Description	Variables move in same direction As x increase, y increases As x decreases, y decreases	Variables move in opposite directions As x increases, y decreases As x decreases, y increases
Constant of variation, k	Found by dividing y by x	Found by multiplying x and y
Equation	$y=k x$	$y=\frac{k}{x}$
Graph		
Graph Characteristics	Graph is a line Must go through the origin!!! $(0,0)$ The constant of variation, k, is also the slope of the lione	Cannot include the origin!!! $(0,0)$ Not a line

Desmos Tip:

1. Given a table? Add it to Desmos and interpret the results. (see graph characteristics) Compare to your answer choices by typing them into Boxes " 1 "-" 4 "
2. Asked to graph points on a Direct Variation? Always use $(0,0)!!!!$

Variation

Guided Practice

A relation is shown in the table below.

x	y
-3	-6
-2.5	-7.2
4	4.5
6	3

Which of the following statements is true?
A. The relation is a direct variation because $x y=18$
B. The relation is a direct variation because $y=\frac{1}{2} x$
C. The relation is an inverse variation because $x y=18$
D. The relation is an inverse variation because $y=\frac{1}{2} x$

The point shown is an element of a direct variation. Plot two points other than the point shown, that are also elements of the direct variation

A relation is shown in the table below.

x	y
5	6
8	9.6
10	12
15	18

Which of the following statements is true?
A. The relation is a direct variation because $x y=30$
B. The relation is a direct variation because $y=1.2 x$
C. The relation is an inverse variation because $x y=30$
D. The relation is an inverse variation because $y=1.2 x$

The relation show is an inverse variation. Write the equation that represents the variation.

$$
\left\{(3,4),\left(\frac{1}{2}, 24\right),(-6,-2),\left(18, \frac{2}{3}\right)\right\}
$$

