Multiple Choice

1. (calculator not allowed) If \(\frac{dy}{dx} = x^2 y \), then \(y \) could be

(A) \(3 \ln \left(\frac{x}{3} \right) \)

(B) \(e^x + 7 \)

(C) \(2e^x \)

(D) \(3e^{x^2} \)

(E) \(\frac{x^3}{3} + 1 \)

\[\int \frac{1}{y} \, dy = \int x^2 \, dx \]

\[e^{\ln y} = \frac{x^3}{e^x} + C \]

\[y = \pm ke^{x^3} \]

\[|y| = e^{x^3} \cdot e^c \]

2. (calculator not allowed) Which of the following is the solution to the differential equation \(\frac{dy}{dx} = \frac{4x}{y} \), where \(y(2) = -2 \)?

(A) \(y = 2x \) for \(x > 0 \)

(B) \(y = 2x - 6 \) for \(x \neq 3 \)

(C) \(y = -\sqrt{4x^2 - 12} \) for \(x > \sqrt{3} \)

(D) \(y = \sqrt{4x^2 - 12} \) for \(x > \sqrt{3} \)

(E) \(y = -\sqrt{4x^2 - 6} \) for \(x > \sqrt{1.5} \)

\[\int y \, dy = \int 4x \, dx \]

\[\frac{1}{3} y^2 = 2x^2 + C \]

\[y^2 = 4x^2 + C \]

\[4 = 16 + C \]

\[-12 = C \]

\[y^2 = 4x^2 - 12 \]

\[y = \pm \sqrt{4x^2 - 12} \]
3. (calculator not allowed)

Which of the following is a slope field for the differential equation \(\frac{dy}{dx} = \frac{x}{y} \):

(A) [Diagram]

(B) [Diagram]

(C) [Diagram]

(D) [Diagram]

(E) [Diagram]

\[y \, dy = x \, dx \]
\[\frac{y^2}{2} = \frac{x^2}{2} + c \]
\[y^2 - x^2 = C \]

Hyperbolas

\[\frac{dy}{dx} = -\frac{x}{y} \]

Circles

\[\frac{dy}{dx} = -\frac{2x}{y} \]

Ellipses
5. (calculator not allowed)
Bacteria in a certain culture increase at a rate proportional to the number present. If the number of bacteria doubles in three hours, in how many hours will the number of bacteria triple?

(A) \(\frac{3 \ln 3}{\ln 2} \)
(B) \(\frac{2 \ln 3}{\ln 2} \)
(C) \(\frac{\ln 3}{\ln 2} \)
(D) \(\ln \left(\frac{27}{2} \right) \)
(E) \(\ln \left(\frac{9}{2} \right) \)

6. (calculator not allowed)
If \(\frac{dy}{dt} = -2y \) and if \(y = -1 \) when \(t = 0 \), what is the value of \(t \) for which \(y = \frac{1}{2} \)?

(A) \(-\ln \frac{2}{3} \)
(B) \(-\frac{1}{4} \)
(C) \(-\ln \frac{2}{3} \)
(D) \(\frac{\sqrt{2}}{2} \)
(E) \(\ln 2 \)

7. (calculator not allowed)
If \(\frac{dy}{dx} = 2y^2 \) and if \(y = -1 \) when \(x = 1 \), then when \(x = 2, y = \)

(A) \(-\frac{2}{3} \)
(B) \(-\frac{1}{3} \)
(C) 0
(D) \(\frac{1}{3} \)
(E) \(\frac{2}{3} \)
8. (calculator not allowed)
At each point \((x,y)\) on a certain curve, the slope of the curve is \(3x^2y\). If the curve contains the point \((0,8)\), then its equation is

(A) \(y = 8e^{x^2}\)
(B) \(y = x^3 + 8\)
(C) \(y = e^{x^3} + 7\)
(D) \(y = \ln(x+1) + 8\)
(E) \(y^2 = x^3 + 8\)

\[
\frac{dy}{dx} = 3x^2y
\]

\[
\frac{dy}{y} = 3x^2\,dx
\]

\[
\ln|y| = e^{x^3} + C
\]

\[
y = 8e^{x^3}
\]

9. (calculator not allowed) If the graph of \(y = f(x)\) contains the point \((0, 2)\), \(\frac{dy}{dx} = \frac{-x}{y e^{x^2}}\) and \(f(x) > 0\) for all \(x\), then \(f(x) = \)

(A) \(3 + e^{-x^2}\)
(B) \(\sqrt{3 + e^{-x^2}}\)
(C) \(1 + e^{-x^2}\)
(D) \(\sqrt{3 + e^{-x^2}}\)
(E) \(\sqrt{3 + e^2}\)

\[
\int y\,dy = \frac{1}{2} \int \frac{2x}{e^{x^2}}\,dx
\]

\[
u = x^2
\]

\[
u' = 2x
\]

\[
\frac{\sqrt{y^2}}{2} = -\frac{1}{2} \int \frac{du}{e^u}
\]

\[
\frac{\sqrt{y^2}}{2} = -\frac{1}{2} \cdot e^{-u} + C
\]

\[
y^2 = e^{-x^2} + C
\]

\[
y^2 = \frac{e^{-x^2} + C}{2}
\]

\[
y = 1 + C
\]

10. (calculator not allowed)
If \(\frac{dy}{dx} = \tan x\), then \(y = \)

(A) \(\frac{1}{2} \tan^2 x + C\)
(B) \(\sec^2 x + C\)
(C) \(\ln|\sec x| + C\)
(D) \(\ln|\sec x + C|\)
(E) \(\sec x \tan x + C\)

\[
y = -\int \frac{du}{u}
\]

\[
y = -\ln|1 + C|
\]

\[
y = -\ln|\cos x| + C = \ln(|\cos x|^{-1} + C)
\]

\[
y = \ln|\cos x|^{-1} + C
\]

\[
y = \ln|\cos x|^{-1} + C
\]
11. (calculator not allowed)

Consider the differential equation \(\frac{dy}{dx} = -\frac{2x}{y} \).

(a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated.

(b) Let \(y = f(x) \) be the particular solution to the differential equation with the initial condition \(f(1) = -1 \). Write an equation for the line tangent to the graph of \(f \) at \((1,-1)\) and use it to approximate \(f(1.1) \).

(c) Find the particular solution \(y = f(x) \) to the given differential equation with the initial condition \(f(1) = -1 \).
12. (calculator not allowed)

Consider the differential equation \(\frac{dy}{dx} = (y-1)^2 \cos(\pi x) \).

(a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated.

(b) There is a horizontal line with equation \(y = c \) that satisfies this differential equation. Find the value of \(c \).

(c) Find the particular solution \(y = f(x) \) to the differential equation with the initial condition \(f(1) = 0 \).

\[
\int (y-1)^2 \, dy = \int \cos(\pi x) \, dx
\]

\[
\frac{-1}{y-1} = \frac{\sin(\pi x)}{\pi} + C
\]

\[
-1 = \frac{\sin(\pi x)}{\pi} + C
\]

\[
1 = C
\]

\[
\frac{-1}{y-1} = \frac{\sin(\pi x) + 1}{\pi} \quad \Rightarrow \quad y-1 = \frac{-1}{\sin(\pi x) + 1}
\]

\[
y = \frac{-1}{\sin(\pi x) + 1} + 1
\]
13. (calculator not allowed)
At the beginning of 2010, a landfill contained 1400 tons of solid waste. The increasing function \(W \) models the total amount of solid waste stored at the landfill. Planners estimate that \(W \) will satisfy the differential equation \(\frac{dW}{dt} = \frac{1}{25} (W - 300) \) for the next 20 years. \(W \) is measured in tons, and \(t \) is measured in years from the start of 2010.

(c) Find the particular solution \(W = W(t) \) to the differential equation \(\frac{dW}{dt} = \frac{1}{25} (W - 300) \) with initial condition \(W(0) = 1400 \).

\[
\int \frac{dW}{W-300} = \int \frac{1}{25} dt
\]

\[
\ln |W - 300| = \frac{1}{25} t + C
\]

\[
|W - 300| = e^{\frac{1}{25} t + C}
\]

\[
|W - 300| = ke^{\frac{1}{25} t}
\]

\[
W - 300 = \pm ke^{\frac{1}{25} t} + 300
\]

\[
1400 = ke^0 + 300
\]

\[
1100 = k
\]

\[
W = 1100e^{\frac{1}{25} t} + 300
\]