limits that don't exist (DNE)

1. **Behavior that differs on left and right**

 \[
 f(x) = \begin{cases}
 -x - 3 & x \leq 0 \\
 \frac{x^2}{x} & x > 0
 \end{cases}
 \]

 Find \(\lim_{x \to 0^+} f(x) \) where \(f(x) = \begin{cases}
 -x - 3 & x \leq 0 \\
 \frac{x^2}{x} & x > 0
 \end{cases} \)

2. **Unbounded behavior**

 Find \(\lim_{x \to 0^+} \frac{1}{x} \) = \(\infty \)

 DNE

3. **Oscillating behavior**

 Find \(\lim_{x \to 0} \sin \left(\frac{1}{x} \right) \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>...</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>...</td>
<td>?</td>
</tr>
</tbody>
</table>

Use the graph of the function \(f \) to decide whether the value of the given quantity exists. If it does, find it. If not, explain why.

\[
\begin{array}{|c|c|c|}
\hline
f(-2) & f(2) & \lim_{x \to 0} f(x) \\
\hline
\lim_{x \to -2} f(x) & \lim_{x \to 2} f(x) & \lim_{x \to 0} f(x) \\
\hline
f(0) & f(4) & \lim_{x \to 0} f(x) \\
\hline
\lim_{x \to 0} f(x) & \lim_{x \to 4} f(x) & \lim_{x \to 0} f(x) \\
\hline
\end{array}
\]