1. Find the derivative

\[f(x) = 2^{\cos x} \]

\[f'(x) = \ln 2 \cdot 2^{\cos x} (-\sin x) \]
2. Find the derivative

\[g(x) = \log_5(\sqrt[3]{x}) \]

\[g(x) = \log_5(x^{\frac{1}{3}}) \]

\[g(x) = \frac{1}{3} \log_5 x \]

\[g'(x) = \frac{1}{3 \ln 5 \cdot x^{\frac{1}{3}}} \]
3. Let f be the function defined by $f(x) = x^4 - 2x + 3$. If $g(x) = f^{-1}(x)$ and $g(5) = 1$, what is the value of $g'(5)$?

$$g'(5) = \frac{1}{f'(g(5))} = \frac{1}{f'(1)} = \frac{1}{4(1)^3 - 2} = \frac{1}{2}$$
4. Write an equation to the line tangent to the curve \(y = \arctan(4x) \) at the point at which \(x = \frac{1}{4} \).

\[
y - \frac{\pi}{4} = 2 \left(x - \frac{1}{4} \right)
\]
5. Let \(f \) be a differentiable function such that \(f(-1) = 7 \), \(f'(9) = -1 \), \(f'(-1) = -4 \), and \(f'(-1) = -5 \). The functions \(g \) and \(f \) are differentiable and inverses for all \(x \). What is the value of \(g'(7) \)?
6. What are the coordinates of the inflection point on the graph of
\(y = (x + 1) \arctan x \)?

a. \((-1, 0)\)
b. \((0, 0)\)
c. \((0, 1)\)
d. \(\left(1, \frac{\pi}{4}\right)\)
e. \(\left(1, \frac{\pi}{2}\right)\)
7. Find the derivative

\[y = \log_{10}(4^{-x} + 5^{2x}) \]

\[y' = \frac{-\ln 4 \cdot 4^{-x} + \ln 5 \cdot 5^{2x} \cdot 2}{\ln 10 \left(4^{-x} + 5^{2x}\right)} \]
8. Find the derivative

\[\log_5 \sqrt{x^2 - 1} \]
9. Find the derivative

$$25 \arcsin \frac{x}{5} - \arctan \frac{x}{5}$$
10. Find the derivative

$$y = x^3 \arcsin 7x$$
11. Let \(f = 2 \cos x + 1 \). What is the approximation for \(f(1.5) \) found by using the line tangent to the graph of \(f \) at \(x = \frac{\pi}{2} \)? \leave your answer in terms of \(\pi \)

\[
\begin{align*}
f(\frac{\pi}{2}) &= 1, \\
f'(x) &= -2 \sin x, \\
f'(\frac{\pi}{2}) &= -2
\end{align*}
\]

\[
y - 1 = -2(x - \frac{\pi}{2}) \\
y = 1 - 2(1.5 - \frac{\pi}{2})
\]
12. If $f(x) = \ln x$, then $\lim_{x \to 3} \frac{f(x) - f(3)}{x - 3}$ is
13. \(\lim_{{x \to \infty}} \frac{\ln(e^{3x} + x)}{x} = \)
14. When \(x = 2e \), \(\lim_{h \to 0} \frac{\ln(x+h) - \ln(x)}{h} \) is
15. Let \(f \) be the function defined by
\[f(x) = \sqrt[3]{x}. \]
What is the approximation for \(f(10) \) found by using the line tangent to the graph of \(f \) at the point \((8, 2)\)?
16. \[\lim_{{x \to 0}} \frac{4x^2}{e^{4x} - 4x - 1} \] is
17. Selected values of the increasing function h and its derivative h' are shown in the table. If g is a differentiable function such that $h(g(x)) = x$ for all x, what is the value of $g'(7)$?

<table>
<thead>
<tr>
<th>x</th>
<th>3</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h(x)$</td>
<td>7</td>
<td>22</td>
</tr>
<tr>
<td>$h'(x)$</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>
18. Find the slope of the curve at $x = 2$

$$y = 9x^2 - 4$$