DO NOW: Find a partner!

critical #s

\[f(x) \rightarrow \pm 1 \]
\[g(x) \rightarrow 0, -2 \]
\[f'(x) \]

- \[f \text{ has a relative min at } x = 1 \text{ because } f' \text{ changes from negative to positive} \]
- \[f \text{ has a relative max at } x = -1 \text{ because } f' \text{ changes from positive to negative} \]
- \[f \text{ is increasing } (-\infty, -1) \cup (1, \infty) \text{ because } f' > 0 \]
- \[f \text{ is decreasing } (-1, 1) \text{ because } f' < 0 \]
$g'(x)$

-2 6

g inc: $(-2, 6)$
g dec: $(-\infty, -2)$ $[6, \infty)$
g max: 6
g min: -2
Notes: 5.5 Connecting f' and f'' with the Graph of f

The Second Derivative Test

Interpreting the Graph of f''

AP Free Response:
2015 #5

The figure above shows the graph of f'', the derivative of a twice-differentiable function f, on the interval $[-3, 4]$. The graph of f'' has horizontal tangents at $x = -1$, $x = 1$, and $x = 3$. The areas of the regions bounded by the x-axis and the graph of f'' on the intervals $[-2, 1]$ and $[1, 4]$ are 9 and 12, respectively.

(a) Find all x-coordinates at which f has a relative maximum. Give a reason for your answer.

(b) On what open intervals contained in $-3 < x < 4$ is the graph of f both concave down and decreasing? Give a reason for your answer.

(c) Find the x-coordinates of all points of inflection for the graph of f. Give a reason for your answer.

<table>
<thead>
<tr>
<th>If you want f to be...</th>
<th>f' should be...</th>
</tr>
</thead>
<tbody>
<tr>
<td>f is increasing</td>
<td>f' is positive</td>
</tr>
<tr>
<td>f is decreasing</td>
<td>f' is negative</td>
</tr>
<tr>
<td>f has a relative max</td>
<td>f' changes from positive to negative</td>
</tr>
<tr>
<td>f has a relative min</td>
<td>f' changes from negative to positive</td>
</tr>
<tr>
<td>f is concave up</td>
<td>$f'' > 0$</td>
</tr>
<tr>
<td>f is concave down</td>
<td>$f'' < 0$</td>
</tr>
<tr>
<td>f has a point of inflection</td>
<td>f'' changes sign</td>
</tr>
</tbody>
</table>

- **f'' decreasing / f'' negative**
- **f'' changes sign**
- **Slope of f' changes sign**

- **a)** f has a relative max $\Rightarrow f'$ changes from positive to negative
- **b)** $(-2, -1)$ and $(1, 3)$ because f' is decreasing and negative
- **c)** f has points of inflection at $x = -1, 1, 3$ because the slope of f' changes sign
The figure above shows the graph of the piecewise-linear function f. For $-4 \leq x \leq 12$, the function g is defined by $g(x) = \int_{-4}^{x} f(t) \, dt$. This means $g'(x) = f(x)$.

(a) Does g have a relative minimum, a relative maximum, or neither at $x = 10$? Justify your answer.

(b) Does the graph of g have a point of inflection at $x = 4$? Justify your answer.

- g' changes sign
- Slope of g' changes sign

a) Neither because g' does not change sign
b) Yes because g' has a relative max

$\rightarrow g'$ changes from increasing to decreasing
\rightarrow slope of g' changes sign
Use the graph below to answer the following. What do you notice about the concavity of the graph at the minimum and the maximum?

Let f be a function such that $f'(c) = 0$ and the second derivative of f exists on an open interval containing c.

1. If $f''(c) > 0$, then f has a relative min at $x = c$.
2. If $f''(c) < 0$, then f has a relative max at $x = c$.
3. If $f''(c) = 0$, then the 2nd deriv test fails. Use 1st deriv test w/ sign chart.

Find the relative extrema for $f(x) = -3x^5 + 5x^3$ using the second derivative test.

$f'(x) = -15x^4 + 15x^2$
$0 = -15x^2(x^2 - 1)$
$x = 0$ $x = \pm 1$

$f''(x) = -60x^3 + 30x$
$f''(0) = 0$
Test fails.

$f''(1) = -60 + 30 < 0$
f has a relative max at $x = 1$ because $f'(1) = 0$ and $f''(1) < 0$

$f''(-1) = 60 - 30 > 0$
f has a relative min at $x = -1$ because $f'(-1) = 0$ and $f''(-1) > 0$
Find all relative extrema of \(g(x) = x^3 - 3x^2 + 3 \). Start with Second Derivatives Test (check your answer using First Derivative Test).

2015 #4: Consider the differential equation \(\frac{dy}{dx} = 2x - y \).

Find \(\frac{d^2y}{dx^2} \) in terms of \(x \) and \(y \). Determine the concavity of all solutions for the given differential equation in Quadrant II. Give a reason for your answer.

Let \(y = f(x) \) be the particular solution to the differential equation with the initial condition \(f(2) = 4 \). Does \(f \) have a relative minimum, a relative maximum, or neither at \(x = 2 \)? Justify your answer.