Free Response Practice

Consider the curve given by $x^2 - x^3 y = 0$.

1) **Show that** \(\frac{dy}{dx} \) **on one side to solve** (implicit \(\frac{dy}{dx} \))

 - \(\frac{dy}{dx} = \frac{3x^2 - 2x^3 y}{2x^3} \)
 - This is my answer
 - there is more than one

2) **Find all points on the curve whose x-coordinate is 1**, and write an equation for the tangent line at each of these points.

 - Plug in 1 into original
 - \(y - y_1 = m(x - x_1) \)
 - \(\frac{dy}{dx} \)

3) **Find the x-coordinate of each point on the curve where the tangent line is vertical**.

 - \(x = \frac{m}{x} = \frac{1}{x} \)
 - \(m = \text{undefined} \)
 - \(\text{denom} = 0 \)

 - \(2xy - x^3 = 0 \)
 - \(2y = x^3 \)
 - \(y = \frac{x^3}{2x} = \frac{x^2}{2} \)

 - \(xy^2 - x^3 y = 0 \)
 - \(x(\frac{x^2}{2}^2) - x^3 (\frac{x^2}{2}) = 0 \)
 - \(\frac{x^5}{4} - \frac{x^5}{2} = (0)4 \)
 - \(1x^5 - 2x^5 = 24 \)
Consider the curve given by $x^2 + 4y^2 = 7 + 3xy$.

a) Show that $\frac{dy}{dx} = \frac{3y-2x}{8y-3x}$.

b) Show that there is a point P with x-coordinate 3 at which the line tangent to the curve at P is horizontal. Find the y-coordinate of P.

c) Find the value of $\frac{d^2y}{dx^2}$ at the point P found in part (b).
Notes: 5.1 Extreme Values of Functions

TURN AND TALK: If you have a function defined on a given interval, what is its maximum? What is its minimum? Describe it with words.

- **maximum**: highest y-value
- **minimum**: lowest y-value

\(f(c) \) is an (absolute) minimum if \(f(c) \leq f(x) \) for all \(x \) in the interval.

\(f(c) \) is an (absolute) maximum if \(f(c) \geq f(x) \) for all \(x \) in the interval.

The maximums and minimums of a function on an interval are also called the **extreme values or extrema**.

TURN AND TALK: Try to draw a picture of a function that does not have a maximum on a given interval.

How can you GUARANTEE that a function has both a minimum and a maximum on a given interval?

Function is continuous interval is closed (include the ends)

The Extreme Value Theorem:

If \(f \) is continuous on the closed interval \([a, b]\) then \(f \) has a maximum and a minimum on \([a, b]\)

\(f(c) \) is a relative/local maximum if there is an open interval where \(f(c) \) is a max.

\(f(c) \) is a relative/local minimum if there is an open interval where \(f(c) \) is a min.

If it's just the biggest/smallest number on the interval, it's called **absolute**.

If \(f'(c) = 0 \) or \(f'(c) \) is undefined, then \(c \) is a critical number of \(f \).
Finding absolute extrema

abs max
\((2, 16) \)

abs min
\((1, -1) \)

min value
\(-7\)

Find the absolute extrema of \(f(x) = 3x^4 - 4x^3 \) on the interval \([-1, 2]\).

\[f'(x) = 12x^3 - 12x^2 \]

- \(x = 0 \)
 \(f(0) = 0 \)
 \(f'(x) = 3x^2 - 4x \)
 \(1 - 4 = -3 \)
 \(x = 1 \)
 \(f(1) = 3 + 4 = 7 \)

- \(x = 1 \)
 \(f(1) = 7 \)

Let \(h(x) = 2x^3 + 3x^2 - 12x \). What is the minimum value of \(h \) over the closed interval \(-3 \leq x \leq 3\)?

\[h'(x) = 6x^2 + 6x - 12 \]

- \(x = 2 \)
 \(h(2) = 20 \)
 \(y \)-value

- \(x = 1 \)
 \(h(1) = 7 \)

If \(g(x) = \frac{1}{3}x^3 - 4x^2 + 12x - 5 \) and the domain is the set of all \(x \) such that \(0 \leq x \leq 9 \), then the absolute maximum value of the function \(f \) occurs when \(x \) is

- a. 0
- b. 2
- c. 4
- d. 6
- e. 9

The maximum acceleration attained on the interval \(0 \leq t \leq 3 \) by the particle whose velocity is given by \(v(t) = t^3 - 3t^2 + 12t + 4 \) is

- a. 9
- b. 12
- c. 14
- d. 21
- e. 40

What is the minimum value of \(f(x) = x \ln x \)?

- a. \(-e\)
- b. \(-1\)
- c. \(-\frac{1}{e}\)
- d. 0
- e. \(f(x) \) has no minimum
