Notes: 3.3 Product Rule

Simple Trig Derivatives

| \(\frac{d}{dx} [\sin x] = \cos x \) | \(\frac{d}{dx} [\cos x] = -\sin x \) |

Find the derivative of \(f(x) = (x^3)(\sqrt{x}) \). Simplify first.

Is this the same as \(\frac{d}{dx} [x^3] \cdot \frac{d}{dx} [\sqrt{x}] \)?

Product Rule

The product of two differentiable functions \(f \) and \(g \) is itself differentiable. Moreover, the derivative of \(fg \) is the first function times the derivative of the second, plus the second function times the derivative of the first.

\[
\frac{d}{dx} [fg] = f(x)g'(x) + g(x)f'(x)
\]

Find the derivative of \(g(x) = (3x - 2x^2)(5 + 4x) \)

\[
g'(x) = (3x - 2x^2)(4) + (5 + 4x)(3 - 4x) \]

\[
g'(x) = 12x - 8x^2 + 15 - 20x + 12x - 16x^2
\]

\[
g'(x) = -24x^2 + 4x + 15
\]

Option #2: \(g(x) = 15x + 12x^2 - 10x^2 - 8x^3 \)

\[
g(x) = -8x^3 + 2x^2 + 15x
\]

\[
g'(x) = -24x^2 + 4x + 15
\]

TURN AND TALK: How else could I find the derivative of \(g \)?
Using the Product Rule

Let \(y = uv \) be the product of the functions \(u \) and \(v \). Find \(y'(2) \) if

\[
\begin{align*}
 u(2) &= 3 & u'(2) &= -4 & v(2) &= 1 & v'(2) &= 2
\end{align*}
\]

Find the slope of the line tangent to \(f(x) = 3x^2 \sin x \) for any value of \(x \).

Find the derivative of \(h(x) = 2x \cos x - 2 \sin x \).

\[
\begin{align*}
 h'(x) &= 2x(-\sin x) + \cos x \cdot 2 - 2 \cos x \\
 h'(x) &= -2x \sin x
\end{align*}
\]

The Second Derivative

Alternate Notation:

Newton

\(f''(x) \)

double prime

Leibniz

\[
\frac{d^2y}{dx^2} = \frac{d}{dx} \left[\frac{dy}{dx} \right]
\]

Find \(\frac{d^2y}{dx^2} \) given \(y = x \cos x \).

\[
\begin{align*}
 \frac{dy}{dx} &= x(-\sin x) + \cos x \\
 &= -x \sin x + \cos x \\
 \frac{d^2y}{dx^2} &= -x(\cos x) + \sin x(-1) + (-\sin x) \\
 &= -x \cos x - 2 \sin x
\end{align*}
\]
Notes: 3.4 Quotient Rule

Higher Order Derivative Notation

original function is \(y: y', y'', y''', y^{(4)}, \ldots, y^{(n)} \), ...

original function is \(f(x): f'(x), f''(x), f'''(x), f^{(4)}(x), \ldots \)

original function is \(y: \frac{dy}{dx}, \frac{d^2y}{dx^2}, \frac{d^3y}{dx^3}, \ldots \)

Given \(f(x) = \cos x \), find \(f^{(4)}(x) \).

\[f'(x) = -\sin x \]
\[f''(x) = -\cos x \]
\[f'''(x) = \sin x \]
\[f^{(4)}(x) = \cos x \]

Find the derivative of the function \(f(x) = \frac{3x^3 - 4x + 3}{x} \) by rewriting first.

\[f(x) = \frac{3x^2}{x} - \frac{4x}{x} + \frac{3}{x} = 3X - 4 + 3X^{-1} \]

\[f'(x) = 3 - 3x^{-2} = 3 - \frac{3}{x^2} \]

Is this the same as \(\frac{d}{dx} \left[\frac{3x^3 - 4x + 3}{x} \right] \)?

\[\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2} \]

\[\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{vdu - udv}{v^2} \]

\[\frac{d}{dx} \left(\frac{hi}{lo} \right) = \frac{lo \cdot d(hi) - hi \cdot d(lo)}{[lo]^2} \]

\[\frac{d}{dx} \left(\frac{hi}{ho} \right) = \frac{ho \cdot d(hi) - hi \cdot d(ho)}{ho \cdot ho} \]
Using the Quotient Rule

Find the derivative of \(f(x) = \frac{5x-2}{x^2+1} \)

\[
f'(x) = \frac{(x^2+1)(5) - (5x-2)(2x)}{(x^2+1)^2}
\]

\[
f'(x) = \frac{5x^2+5 - 10x^2 + 4x}{(x^2+1)^2} = \frac{-5x^2 + 4x + 5}{(x^2+1)^2}
\]

Find the derivative of \(g(x) = \frac{3}{x-5} \) (HINT: Simplify first!). Then find the slope of the normal line at \((-1, 1)\).

\[
g(x) = \frac{3-x}{x-5} \implies g(x) = \frac{3x-1}{x^2-5x}
\]

\[
g'(x) = \frac{(x^2-5x)(3) - (3x-1)(2x-5)}{(x^2-5x)^2} = \frac{18-28}{36} = \frac{-10}{36} = \frac{-5}{18}
\]

Find equations of the tangent lines to the graph of \(f(x) = \frac{x+1}{x-1} \) that are parallel to the line \(2y+x=6 \).

\[
f'(x) = \frac{(x-1)(1)-(x+1)(1)}{(x-1)^2} = \frac{x-1-x-1}{(x-1)^2} = \frac{-2}{(x-1)^2}
\]

\[
f'(x) = \frac{1}{2} = -\frac{2}{(x-1)^2}
\]

\[
2y+x = 6 \implies y = -\frac{1}{2}x + 3 \implies m = -\frac{1}{2}
\]

Find the derivative of \(y = \frac{x^2+3}{2x} \)

\[
\frac{dy}{dx} = \frac{(2x)(x^2+3) - (x^2+3)(2x)}{(2x)^2}
\]

\[
= \frac{2x^3 + 6x - 2x^3 - 6x}{4x^2} = 0
\]

\[
f(-1) = 0
\]

\[
f(3) = \frac{4}{2} = 2
\]

Is the Quotient Rule always needed for rational functions?
next class: partner quiz

• power rule
• product rule
• quotient rule
• derivs of sinx & cosx