1. What is the difference between 34,343 and 12,122?
 A) 33,133 B) 22,222 C) 32,222 D) 33,131

2. \((100 - 40) + (90 - 30) + (80 - 20) = 3 \times \)?
 A) 20 B) 60 C) 80 D) 180

3. When \(999 + 999 + 99 + 4\) is divided by 9, the remainder is
 A) 1 B) 3 C) 4 D) 5

4. Divide one million by five hundred thousand. The quotient is
 A) 2 B) 10 C) 20 D) 50

5. \(2^4 - 2^3 - 2^2 - 2^1 = 16 - \)?
 A) 1 B) 2 C) 14 D) 15

6. Jao is the 12th of 25 people to get her pen "biggie-sized" at McBurger's. How many people are there between Jao and the 25th person on line?
 A) 11 B) 12 C) 13 D) 14

7. What is the sum of the first four odd whole numbers?
 A) 6 B) 9 C) 10 D) 16

8. What is the tens' digit of the product 22,222 \(\times\) 22,222?
 A) 8 B) 6 C) 4 D) 2

9. \(8777 - 7777 = 444 + \)?
 A) 445 B) 455 C) 545 D) 555

10. Altogether, if 12 of our small elephant balloons weigh 130 kg, then 72 of these same balloons weigh
 A) 190 kg B) 650 kg C) 780 kg D) 864 kg

11. 500 is midway between 350 and
 A) 200 B) 650 C) 700 D) 850

12. The number of dimes in $4 equals the number of quarters in
 A) $6 B) $8 C) $10 D) $40

13. How many different positive factors are common to 36 and 48?
 A) 4 B) 5 C) 6 D) 8

14. The smallest composite number without 2, 3, or 5 as a factor is
 A) 41 B) 49 C) 67 D) 77

15. The average of sixteen 4s, times the average of four 16s, equals
 A) \(4 \times 16\) B) \(16 \times 16\) C) \(16 \times 64\) D) \(64 \times 64\)
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30. The product of 4 different whole numbers could not equal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A) 2^4</td>
<td>B) 2^6</td>
<td>C) 2^8</td>
<td>D) 2^{12}</td>
<td></td>
</tr>
<tr>
<td>31. Each of 5 bikers sang a duet with each of the others. A total of ? duets were sung.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A) 10</td>
<td>B) 15</td>
<td>C) 20</td>
<td>D) 25</td>
<td></td>
</tr>
<tr>
<td>32. $200^3 \div 100^3 = 200 \div ?$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A) 100</td>
<td>B) 80</td>
<td>C) 25</td>
<td>D) 8</td>
<td></td>
</tr>
<tr>
<td>33. How many whole numbers less than 1000 are not divisible by 4?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A) 875</td>
<td>B) 850</td>
<td>C) 800</td>
<td>D) 750</td>
<td></td>
</tr>
<tr>
<td>34. If the sum of 2 whole numbers is 76, their product is at most</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A) 5776</td>
<td>B) 5700</td>
<td>C) 1444</td>
<td>D) 1443</td>
<td></td>
</tr>
<tr>
<td>35. Between 1901 and 2001, it was possible for a period of 5 consecutive calendar years to contain a total of ? days.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A) 1825</td>
<td>B) 1827</td>
<td>C) 1828</td>
<td>D) 1830</td>
<td></td>
</tr>
<tr>
<td>36. A plane left New York at 2 P.M. and landed in Vancouver 6 hours later. If New York time is 3 hours ahead of Vancouver time, when did the plane land, in Vancouver time?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A) 11 P.M.</td>
<td>B) 9 P.M.</td>
<td>C) 8 P.M.</td>
<td>D) 5 P.M.</td>
<td></td>
</tr>
<tr>
<td>37. If a radius of one circle with area 16π cm2 is used as a diameter of a second circle, how far apart are the centers of the two circles?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A) 2 cm</td>
<td>B) 4 cm</td>
<td>C) 6 cm</td>
<td>D) 8 cm</td>
<td></td>
</tr>
<tr>
<td>38. If $51 + 52 + \ldots + 100 = 3775$, then $101 + 102 + \ldots + 150 =$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A) 8775</td>
<td>B) 7550</td>
<td>C) 6275</td>
<td>D) 3825</td>
<td></td>
</tr>
<tr>
<td>39. The sum of 1999 positive whole numbers is 2002. What is the least possible number of 1s that can be used as addends in this sum?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40. What is the name of the only regular polygon which has as many diagonals as it has sides?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A) square</td>
<td>B) pentagon</td>
<td>C) hexagon</td>
<td>D) octagon</td>
<td></td>
</tr>
</tbody>
</table>

Visit our Web site at http://www.mathleague.com

Solutions on Page 117 • Answers on Page 148